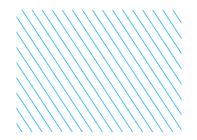


ULTRASONIC SPRAYING AND AEROSOL

The liquid is sprayed when coming into contact with the vibrating surface.


The ultrasonic nozzle produces droplets or particles of mastered size: the higher the ultrasonic frequency, the smaller the aerosol particles (some μm).

Two principles exist:

- Within the frequency range between 20 kHz and 100 kHz, the liquid is sprayed when coming into contact with a vibrating surface.
- Within the frequency range above 100 kHz, an ultrasonic emitter is placed on the bottom of a volume of liquid. The sound field produces a fountain on the liquid's surface from which an aerosol is developed.

BENEFITS

- Particle size controlled
- No air supply
- No contamination
- Reduced energy consumption

FEATURES

ULTRASONIC NOZZLE

Frequency	Output	Particle size	Throughput
60 kHz	25 W	35 μm	5-40 ml/min
80 kHz	25 W	25 μm	5-30 ml/min
2.4 MHz	20 W	2,5 μm	1-7 ml/min

APPLICATION EXAMPLES

- Humidification
- Medical aerosols
- Application of fine layers
- Spread in environments
- Production of plotters
- Confined atmosphere control

